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Abstract—We proposed an efficient halving and doubling
algorithm in the DCT domain that re-sizes images based on
a 4 × 4 DCT block framework. Our approach improved an
existing resizing algorithms through fixed-point integer trans-
forms to reduce computational cost by more than 60% with
negligible dB loss. When comparing images that were halved or
doubled through bilinear interpolation, our algorithm produced
images with similar or higher PSNR values at significantly lower
computational cost.

Index Terms—Image Halving and Doubling, DCT Domain
resizing.

I. INTRODUCTION

Resizing video or images for storage or transmission is often
required because of imposed constraints dictated by network
bandwidth or device capabilities. Usually, systems resize video
or images in the spatial domain; however, it would be more
attractive to resize the them directly in the compressed format,
which would avoid high computational overhead associated
with decompression and compression operations. Recently,
video data is often stored in a compress format based on
blocks of 4× 4 discrete cosine transform (DCT) coefficients.
Video compression standards such as H.264/AVC [1] [2] and
H.265/HEVC employ 4 × 4 fixed-point approximation of the
popular DCT to transform frames from the spatial to the
frequency domain.

In the early days of developing resizing algorithms in
the Discrete Cosine Transform (DCT) domain, researchers
devoted effort to image1 halving and doubling problem. Some
of the early contributors in this field were Chang and Messer-
chmitt [3], and Merhav and Bhaskaran [4] who developed
resizing algorithms that exploit linear, distributive and unitary
transform properties of DCT. Although image quality was
similar and often times superior than resizing in the spatial
domain, the computational complexity was almost same as
spatial domain resizing techniques.

Dugad and Ahuja [5] proposed a simple fast computation
algorithm for image halving and doubling by exploiting the
low frequency DCT coefficients. Later, Mukherjee and Mitra
[6] proposed modifications to Dugad and Ahuja [5] schema.
These modifications improved image quality but increased
computational cost. Mukherjee and Mitra [6] observed both

1Image and video frames will be used interchangeably in this paper.

of these techniques use subband approximation of DCT co-
efficients while performing image resizing operations in the
frequency domain.

Jiang and Feng [7] formulated spatial relationships of the
DCT coefficients between a block and sub-blocks. Using their
approach one can decompose and recompose blocks of DCT
coefficients. Mukherjee and Mitra [8] created several resizing
algorithms based on decomposition and re-composition com-
bined with subband approximation. Depending on the ordering
of these operations, one can vary the computational cost and
the final image quality for a resizing algorithm.

Two of these algorithms were of interest to us in our
research. The first was an image halving algorithm, Im-
age Halving through Approximation followed by Composi-
tion (IHAC) [8] and its inverse doubling algorithm, Image
Doubling through Decomposition followed by Approximation
[8]. Both of these algorithms included conversion matrix to
compose and decompose blocks of DCT coefficients when
resizing images in the DCT domain. These matrices consist of
entries that are approximation of irrational numbers. Although
conversion matrices contained several zero entries, matrix
multiplication with blocks of DCT coefficients contributed
most to the overall computational cost. However, both these
algorithms have been shown to provide greater efficiency than
resizing in the spatial domain [9] [8].

We proposed to enhance Mukherjee and Mitra image and
doubling algorithms by deriving a fix-point approximation of
these conversion matrices. We followed a similar approach that
the H.264/AVC standard body developed to define the default
inverse transform process. H.264/AVC deviated from previous
video compression standards by employing a 4 × 4 fix-point
integer transform instead of the popular 8×8 DCT. Malvar et
al [10] [11] reported a reduction in complexity with negligible
impact on image quality.

This paper will first describe how we enhanced Mukherjee
and Mitra IHAC and IDDA algorithms [8] by deriving a
fix-point conversion matrix to replace the floating-point con-
version matrix in the block composition and decomposition
step. Then a section will cover the image quality performance
followed by a section on computational cost of our proposed
algorithms. The last section contains closing remarks and
future directions.
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Fig. 1. IHAC [8]. Four 2 × 2 approximated DCT coefficients of adjacent
blocks are composed into one 4× 4 DCT block.
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Fig. 2. IDDA [8]. An 4 × 4 DCT block is decomposed into four 4
2
× 4

2
blocks where each is approximated to an 4×4 DCT block with zero-padding.

II. IMPROVING IMAGE HALVING AND DOUBLING
ALGORITHMS THROUGH FIX-POINT CONVERSION MATRIX

Image halving is an operation that takes an image of size
N × N and outputs an image of N/2 × N/2, where image
doubling is the inverse operation to resize an image to a
resolution of 2N × 2N .

Let b an 4 × 4 block in the spatial domain whose DCT
coefficients are encoded as 4× 4 block B in the compressed
domain, with elements B(k, l), k, l = 0, 1, 2, 3. Generally,
to half an image one needs to convert four adjacent DCT
blocks, B1,B2,B3 and B4, to a single 4 × 4 DCT block,
B̂. In Mukherjee and Mitra [8] IHAC algorithm, four 2 × 2
adjacent blocks are derived from the corresponding 4×4 DCT
blocks using subband approximation. Then the 2×2 blocks are
recomposed to form an single 4×4 block using an conversion
matrix as illustrated in Fig. 1.

To double an image Mukherjee and Mitra [8] employed
DCT block decomposition. In the IDDA algorithm, an 4 × 4
DCT block is first decomposed using conversion matrix to four
2× 2 DCT blocks. Then each of these blocks are transformed
into an 4×4 DCT block by using subband approximation and
zero-padding. Fig. 2 provides a schematic representation of
this algorithm.

Let a compressed image be based on a 4 × 4 DCT block
framework. To halve this image the IHAC resizing algorithm
would contain the following composition step.

Bd = A(2,2)

[
B̂

(2×2)
00 B̂

(2×2)
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11

]
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Bd = A(2,2) · B̂ ·AT
(2,2) (1)

Where · denotes matrix multiplication and the conversion

matrix:

A(2,2) =
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Note that the rows of A(2,2) are orthogonal and unit norms,
which is a necessary condition for an orthogonal block
transform. All the entries in A(2,2) require processors to
approximate irrational numbers. A fixed-point approximation
is equivalent to scaling each row of A(2,2) and rounding to
the nearest integer. We chose to multiple A(2,2) by 2.5 and
round, gives C(2,2):

C(2,2) = round
(
2.5 ·A(2,2)

)
(3)

C(2,2) =


2 0 2 0
2 1 −2 1
0 2 0 −2
−1 2 1 2

 (4)

We selected the scaling constant of 2.5 because it was same
one that the H.264/AVC designers used to develop their fix-
point approximation of 4-point DCT [10] [11].

The row norms of C(2,2) are 6= 1. To restore the orthonor-
mal property of the original matrix of A(2,2), we multiply all
the values of cij in row r by 1√∑

j

c2
rj

:

A(2,2) = C(2,2) •R(2,2) (5)
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The operator • denotes an element-by-element multiplication.
The two-dimensional transform in Equation (1) becomes:

Bd = A(2,2) · B̂ ·AT
(2,2) (7)

= [C(2,2) •R(2,2)] · B̂ · [CT
(2,2) •R

T
(2,2)] (8)

Rearranging to extract the scaling arrays R(2,2):

Bd = [C(2,2) · B̂ ·CT
(2,2)] • [R(2,2) •RT

(2,2)] (9)

= [C(2,2) · B̂ ·CT
(2,2)] • S(2,2) (10)

Where
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Using the new fixed-point approximation of the conversion
matrix C(2,2) with its scaling matrix S(2,2), we modified the
IHAC algorithm. Fig. 3 outlines our new proposed image
halving algorithm that takes advantage of these matrices in
the block composition step.



Input: 4× 4 block based DCT encoded image.
Output: 4 × 4 block based DCT encoded downsampled

image.
for every four adjacent 4× 4, B00,B01,B10,B11 of the
input image do

1. Subband approximation: Get corresponding 2 × 2

2-point DCT blocks {B̂(2×2)
ij }, i = 0, 1 and j = 0, 1

using low-pass truncated approximation, as follows.

B̂
(2×2)
ij =

1

2
[Bij(k, l)]0≤k,l≤1

2. Block composition: Convert four 2× 2 DCT blocks
to a 4× 4 DCT block Bd as follows.
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end for
Fig. 3. Our proposed resizing algorithm, IHACfpa, for halving an image
based on a 4× 4 DCT block framework.

Input: 4× 4 block based DCT encoded image.
Output: Upsampled image in the compressed domain.

for each 4× 4 blocks B do the following: do
1. Block decomposition: Convert the block to four 2×2
DCT blocks as follows.[

B
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B
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]
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2. Subband approximation and zero padding: Com-
pute the approximate 4 × 4-point DCT coefficients
from each of B

(2×2)
ij , i = 0, 1 and j = 0, 1, low-pass

truncated approximation. Form four 4× 4 DCT blocks
by zero padding each of them (the high frequency
components are assigned to zero 02).

B
(4×4)
ij = 2

[
B

(2×2)
ij 02
02 02

]
end for

Fig. 4. Our resizing algorithm IDDAfpa for doubling images based on a
4× 4 DCT block framework.

Similarly, we modified the IDDA algorithm in the decom-
position step to leverage the fix-point approximation of the
conversion matrix with its scaling matrix. Fig. 4 displays the
outline of our proposed fix-point approximation of the IDDA
algorithm (IDDAfpa).

III. IMAGE QUALITY EXPERIMENTS AND OBSERVATIONS

We developed three experiments to evaluate image quality
performance of our proposed fixed-point approximation of the
IHAC and IDDA algorithms. In the first experiment, for each
image in the sample set Iorig of size N ×N is first spatially
downsampled using MATLAB bicubic interpolation with anti-
aliasing to an image Id of size N/2 × N/2. These halved
images provided a reference so PSNR can be computed when
comparing images produced from various halving algorithms.

TABLE I
EXPERIMENT 1. PSNR VALUES FROM IMAGE HALVING EXPERIMENT.

Image IHS IHAC IHACfpa

Fishing Boat 39.95 41.98 41.65
Cameraman 40.48 46.09 45.47
Elaine 45.14 45.86 45.97
Goldhill 42.39 43.62 43.36
House 46.50 50.47 50.92
Jetplane 40.36 43.49 43.22
Lake 39.13 42.66 42.39
Lena 42.00 45.62 45.45
Livingroom 40.06 42.00 41.69
Mandril 36.60 36.38 36.20
Peppers 42.72 44.25 44.27
Pirate 40.84 43.23 43.06
Walking Bridge 37.90 39.70 39.39
Watch 36.70 41.03 40.76
Woman Blonde 41.74 42.33 42.21
Woman Darkhair 48.76 51.15 51.61

mean(PSNR) 41.33 43.74 43.60

The original images Iorig in the sample set are raw grayscale
(8 bits/pixel) images with a resolution of 512 × 512 pixels.
In all the experiments, we applied MATLAB dct2 function
to transform all the images Iorig from the spatial to the
DCT domain to represent compressed images formatted as
blocks of 4 × 4 DCT coefficients. We applied the DCT
resizing algorithms on the compressed Iorig and outputted
a compressed halved image. Using MATLAB idct2, we
transformed these newly compressed halved images back into
the spatial domain where we computed an PSNR with the
reference halved images. We also compared our proposed
halving algorithm with halved images that were resized in the
spatial domain by bilinear interpolation, which will be referred
as IHS. Table I shows the PSNR values computed from
comparing the halved images generated from our proposed
halving algorithm with IHAC and IHS.

For the second experiment to evaluate image quality perfor-
mance of our IDDAfpa algorithm, we first spatially downsam-
pled image Iorig to create an image Id that are compressed
then upsampled in the DCT domain. We used MATLAB
bicubic interpolation with anti-aliasing to halve images in the
spatial domain to produce image Id. Using MATLAB idct2
function, we transformed the spatially halved image Id to
the DCT domain to represent a compressed image formatted
as blocks of 4 × 4 DCT coefficients. Then we applied the
doubling algorithms to resize and output compressed image
to the original resolution. We transformed the compressed
doubled image back into the spatial domain using MATLAB
idct2 function so a PSNR value can be computed between
the upsampled image with the original image Iorig. Similar
in the first experiment, we doubled the halved image Id in
the spatial domain using bilinear interpolation for comparison,
which will be referred as IDS in the paper. Table II displays
the result of this experiment.

In the third experiment, an image is first halved and then
doubled. The resulting upsampled image is compared with
the original image Iorig. We compared the PSNR value



TABLE II
EXPERIMENT 2. PSNR VALUES FROM IMAGE DOUBLING EXPERIMENT.

Image IDS IDDA IDDAfpa

Fishing Boat 28.94 29.40 29.11
Cameraman 33.21 33.68 32.91
Elaine 32.53 32.75 32.50
Goldhill 30.62 43.62 43.36
House 41.72 41.18 39.66
Jetplane 30.12 30.64 30.25
Lake 29.34 29.77 29.36
Lena 32.69 33.17 32.72
Livingroom 28.58 28.93 28.69
Mandril 23.05 23.48 23.37
Peppers 31.18 31.59 31.28
Pirate 29.99 30.43 30.14
Walking Bridge 26.23 26.70 26.47
Watch 27.11 27.55 27.14
Woman Blonde 28.96 29.37 29.18
Woman Darkhair 39.83 40.04 39.44

mean(PSNR) 30.88 31.23 30.81

TABLE III
EXPERIMENT 3. PSNR VALUES FROM IMAGE HALVING FOLLOWED BY

IMAGE DOUBLING.

Image IHS IHAC IHACfpa

IDS IDDA IDDAfpa

Fishing Boat 27.99 28.64 29.37
Cameraman 31.24 33.94 33.16
Elaine 31.89 32.96 32.64
Goldhill 29.81 31.27 31.02
House 38.65 41.73 39.68
Jetplane 29.02 30.88 30.47
Lake 28.15 30.00 29.57
Lena 31.41 33.43 32.92
Livingroom 27.71 29.15 28.93
Mandril 22.52 23.71 23.62
Peppers 30.35 31.83 31.44
Pirate 29.04 30.66 30.36
Walking Bridge 25.43 26.92 26.71
Watch 25.88 27.75 27.33
Woman Blonde 28.34 29.59 29.40
Woman Darkhair 38.43 40.39 39.48

mean(PSNR) 29.74 31.49 31.01

computed from images generated from resizing algorithms
used in tandem: spatial resizing using IHS-IDS, IHAC-IDDA
and our proposed halving and doubling algorithm. The results
of this experiment are shown in Table III.

When comparing image quality, our proposed halving and
doubling algorithms produced images with slightly lower
PSNR values compared to its floating-point implementation
(IHAC), which was expected because of rounding errors
associated with integer transforms with scaling. For the first
experiment, our IHACfpa algorithm generated images that
were 0.14 dB lower than ones generated from IHAC algorithm.
However, images generated from our halving algorithm were
2.27 dB higher than IHS images over our sample set.

For image doubling experiment, our IDDAfpa algorithm
produced images with a PSNR value of 0.42 dB lower on
average than images doubled from IDDA algorithm. However,
on average our doubling approach created images only 0.07
dB lower than images that were spatially resized. In the third
experiment, when using our proposed algorithms in tandem,

TABLE IV
COMPUTATIONAL COMPLEXITY OF HALVING ALGORITHMS.

ops IHS IHAC IHACfpa

nm 1.25 0.5 0.1875
na 8.25 1 0.25

the PSNR values was 0.48 dB lower than the IHAC-IDDA
pairing but we observed an 1.27 dB gain over the spatial
approach implemented using IHS-IDS pairing. These limited
experiments demonstrated to us that our algorithms could
produced images equal or better than resizing images in the
spatial domain using bilinear interpolation while benefiting
from the computational savings derived from our approach.
The next section will discuss how computationally efficient
our algorithms are.

IV. COMPUTATIONAL COST

This section outlines the computational cost of our proposed
resizing algorithms. By using a fix-point approximation of a
conversion matrix in our proposed algorithms, we hoped to de-
crease computational cost. Leveraging fixed-point arithmetic,
multiplying or dividing values that are a power of two can be
accomplished by binary shift operations. You will observe that
the conversion matrix C(2,2) entries are either 0, 1’s or 2’s.
Therefore, matrix multiplications can be carried out multiplier-
free.

Let nm be number of multiplications and na be number
of additions. The IHACfpa algorithm first does subband ap-
proximation and multiplies each element in the input 4 × 4
DCT coefficients by half, which can be implemented as a
right shift operation; thus no cost. The composition step
contains two matrix multiplications by applying the conversion
matrix C(2,2) on input DCT coefficients twice. Since matrix
multiplication with C(2,2) can be carried out multiplier-free,
only additions count, which there are na = 8. An element-by-
element multiplication is applied with scaling matrix S(2,2).
The scaling matrix S(2,2) contains elements equal to 1/8,
which can be implemented as a right shift operation; thus
nm = 12 and na = 0. Finally, the four 4×4 input DCT blocks
represent 64 pixels of the input image. Therefore, on average
our method will consume nm = 0.1875 and na = 0.25 per
pixel of the original image.

Similarly, the our IDDAfpa algorithm contains two ma-
trix multiplication using the conversion matrix C(2,2). Also,
scaling matrix and subband approximation are similar. Hence,
our proposed doubling algorithm requires nm = 0.1875 and
na = 0.25 per pixel of the upsampled image.

Table IV compares computational complexity for the
IHACfpa algorithm with other image halving algorithms.
Table V provides the complexity of IDDAfpa algorithm with
other image doubling algorithms.

Both of our proposed algorithms is more efficient than
their floating-point implementations. When comparing our
proposed halving algorithm, IHACfpa, with its floating-point
implementation, it was 63% more efficient in nm and 75% in
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Fig. 5. Resultant images downsampled in experiment 1. Figure 5a is an image halved through bicubic interpolation with anti-aliasing, which is the reference
image so PSNR can be computed. Figure 5b is an image halved by our proposed algorithm, IHACfpa, with PSNR value of 45.45 dB. Figure 5c was
downsampled through floating-point implementation of the IHAC algorithm, which provide a PSNR value of 45.62 dB. Figure 5d was a spatial downsampled
image using bilinear interpolation that produced a PSNR value of 42.00 dB.

TABLE V
COMPUTATIONAL COMPLEXITY OF DOUBLING ALGORITHMS.

ops IDS IDDA IDDAfpa

nm 1.25 2 0.1875
na 8.25 1.5 0.25

na. As for our proposed doubling algorithm, IDDAfpa, it was
91% more efficient in nm and 83% in na when comparing with
its floating-point version, IDDA. When comparing both of our
proposed algorithms with spatial resizing, the computational
saving was 85% in nm and 97% in na.

V. CONCLUSION

Several resize algorithms employed conversion matrices
to compose or decompose blocks of DCT coefficients in
their implementation. We developed an fixed-point approxi-
mation of a conversion matrix that is included in IHAC and
IDDA resizing algorithms. Matrix multiplications with fixed-
point approximation of conversion matrices are multiplier-
free, which substantial reduced computational cost in our pro-
posed resizing algorithms. Images generated from our fix-point
resizing algorithms provided PSNR values negligibly lower
than their floating-point implementations. Systems utilizing
our proposed low-complexity algorithms will produce images
with good quality at a greatly reduced computational cost
compare to resizing images in the spatial domain.

Presently, our proposed low-complexity resizing algorithms
only does image halving and doubling, and only on conversion
matrices of size A(2,2). The approach of creating fix-point
approximation of these conversion matrices can be extended so
one can resize images by integral or arbitrary factors. Mukher-
jee and Mitra [8] developed several resizing algorithms that
use conversion matrices for composition and decomposition
such as IHCA, IDAD, LMDS and LMUS, which would be
good candidates for this approach. This would be a logical
avenue for future research.
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