
STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 1

GMTI Modelling and Encoding
James McAvoy

Senior ISR Systems Engineer (Contractor)
DLCSPM 4-PMO ISTAR C2

4th Floor, Louis St-Laurent Building
555 Boul. de la Carrière

Gatineau, Quebéc K1A 0K2
Telephone: 613-836-9209

Mobile: 613-220-7041
Email: jimcavoy@thetastream.com

Abstract—STANAG 4607 defines Ground Moving Target Indicator (GMTI) message format as an ordered sequence of physical bits and
bytes, where the positions of the syntactical elements are fixed. Defining a message in this manner has caused issues with the radar
sensor community. Deployed systems based on older editions of STANAG 4607 would fail to decode messages from later editions
because the sequence of bits and bytes will be considered out of order by the receiver. To solve this issue, industry has employed
Model Driven Engineering (MDE) using ASN.1 for last twenty years to describe their communication protocols with notable success.
The question being proposed is; can Model Driven Engineering approach improve GMTI system develop life-cycle? We conducted
an experiment with limited objectives to find out. The experimental results were encouraging. This study is part of an overall effort to
investigate alternative approaches of defining a GMTI format for both specification and encoding.

Index Terms—GMTI, ASN.1, STANAG 4607, Model Driven Engineering (MDE)

F

1 INTRODUCTION

S ENSOR radars transmit moving target detections for-
matted as Ground Moving Target Indicator (GMTI). To

ensure interoperability between NATO members, NATO
publishes STANAG 4607 [1], NATO GMTI Format. The
standard describes the binary layout for detection data
and also provides a format to request surveillance ser-
vices.

STANAG 4607 is a message format where it outlines
a well-defined set of messages each of which carries a
defined meaning (semantics), together with the rules for
exchanging these messages and processing these mes-
sages between end systems. The standard does not spec-
ify a transmission method, but the AEDP 7 does provide
guidance for transmitting over UDP either broadcast or
multicast. Usually, sensors transmit GMTI messages over
a TCP/IP protocol stack using UDP at the Transport
Layer but can be provided as files as done with the
sensors on a Heron. In summary, STANAG 4607 specifies
a message format for moving target detections that is
designed to be independent of transmission method.

• J. McAvoy is working under contract for the Department of National
Defence, Canada.
E-mail: jimcavoy@thetastream.com

Manuscript received 11 April 2012. This work was supported by Director
Land Command Systems Program Management 4 (DLCSPM 4) under
contract PSA.AGR.1536.1752. This paper was presented in part of STANAG
4545 CST meeting, April 2012.

1.1 The Problem
Presently, we believe there are two issues in the manner
how the sensor community defines the GMTI format:
• the specification is an unstructured document that

prevents automation; and
• the encoding format is inflexible to change.
The following subsection will cover these issues in

more detail.

1.1.1 Specification
Presently, the GMTI format specification is an unstruc-
tured (i.e. not machine processable) text document ex-
pressing the GMTI message structure using human
readable statements. Although the specification is well
written, human developers have to read, interpret, and
manually code the specification, which can be labor
intensive, and error prone activity. The result, the de-
ployed systems may exhibit unpredictable behaviour
when interworking with other deployed systems created
from different implementers.

If the GMTI format specification was declared in a
structured format (i.e. machine processable and com-
putable), programs will be responsible to generate code
instead of human developers. This could improve overall
system predictability, interoperability and cost savings.

1.1.2 Encoding
STANAG 4607 is a binary-based format where the mes-
sage structure is defined as string of octets or bits.

c© 2012 Her Majesty the Queen in Right of Canada as represented by the Minister of National Defence. All rights reserved.

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 2

Each syntactical message element is represented as octets
in the GMTI format that has a fixed position, order
and length. New features added to the standard will
introduce a new syntactical element into the GMTI for-
mat. This could cause end systems to decode the GMTI
message incorrectly because the end system expects the
syntactical elements to be in a prescribe order, position
and length in the bitstream. This manner of encoding
GMTI messages is causing migration and extensibility
issues. For example, older deploy systems will fail to
decode GMTI messages based on a newer edition of the
standard.

We could propose the GMTI format standard be spec-
ified as a character-based protocol, where the message
structure is defined as a series of lines of ASCII en-
coded text. Each syntactical element in the message is
represented as a line of ASCII text. When a new feature
is added, the decoder can ignore the new syntactical
elements in the message it fails to understand. Two
examples of very successful character-based protocol are
HTTP [9] and SMTP [10]. The Internet relays heavily
on the HTTP protocol, while Email on SMTP. These
protocols are more tolerate to migration and extensibil-
ity issues but consume more bandwidth then binary-
based protocols. Most radar systems operate in a very
constraint and limit bandwidth network environment,
which makes character-based protocols unsuitable.

We desire a GMTI format to be a binary-based because
of its small footprint on bandwidth. At the same time,
the format should exhibit character-based protocol be-
haviour for migration and extensibility advantages.

1.2 Motivation

If one surveys standards that various standard bodies
publish today, one will discover the protocols and mes-
sage formats are expressed using some type of notation
or modelling language such as UML [15], XML Schema
[12], ABNF [8] or ASN.1 [4]. The modelling language
defines the abstract syntax of the message that is indepen-
dent of implementation. This decoupling from protocol
specification and encoding implementation provides the
advantage to protocol designers to produce specification
without undue concern with the encoding issues.

Since the specification is expressed using a machine
processable language (i.e. formal language), application
independent tools can be utilized to generate platform
dependent code for message serialization. Because the
model is independent to the tools that generate the
serialization code (i.e. bits on the wire), it facilitates
migration to improved encoding methods when they
become available without changing the specification.

The other positive side of effect of using a modelling
language for protocol development, it reduces ambiguity
and increases clarity of the standard. Since machines
poorly handle ambiguous statements, it imposes proto-
col designers to be more rigorous during specification,
which could lead to better standards. Protocol designers

Fig. 1. Model Driven Engineering (MDE) approach using
models for software development.

PIM ��
��
Compile PSM- -

can use applications to automate the process of dis-
covering errors in the specification before the standard
is published. Hopefully, reducing the time and cost of
reviewing standards.

In the Motion Imagery domain, video systems trans-
mit metadata using Key-Length-Value (KLV) triplets,
which prove to be very flexible and easy method of
encoding. SMPTE 336M-2003 [7] defines the use of KLV
in Motion Imagery. KLV borrows heavily from BER
(Basic Encoding Rule) that is part of in ASN.1 standard.
We reasoned that we should investigate ASN.1 to specify
a GMTI format and take advantage of Model Driven
Engineering (MDE) approach to standards and system
development.

1.2.1 Model Driven Engineering
Model Drive Engineering is a software development
methodology which focuses on creating and processing
models to enhance clarity of specifications, to promote
communication between individuals and teams, and to
automate the production of code during implementation.
Using MDE, standards specifiers create a Platform Inde-
pendent Model (PIM) using modelling language or do-
main specific language (DSL) like ASN.1 or UML. Then
developers compile the PIM to generate Platform Specific
Model (PSM), which can be data structures written in
C or Java programming language for a target operating
system (i.e. Linux, Windows) and hardware platform (i.e.
Intel x86, ARM).

By using this engineering approach, we hope to in-
crease predictability and reduce cost during specifica-
tion and system implementation. Machine processable
models and programs will create the target systems
instead humans hand-crafting code from informal and
unstructured text documents, which is error prone and
costly. In appendix C, we conducted a cost analysis of
code generated from an ASN.1 compiler when reading a
ASN.1 specification of a GMTI format based on STANAG
4607 that demonstrates the cost savings using this ap-
proach.

1.3 Goal
The goal of this study is to determine if Model Driven
Engineering can improve GMTI system development

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 3

life-cycle, from message specification to implementation
and eventually sensor deployment. We will design and
develop a simple GMTI system based on STANAG 4607
that uses ASN.1 standard for specification and encoding
for our study.

1.4 Objectives

To determine if MDE approach can improve GMTI sys-
tem development, we used the following four limited
objectives:
• Extensibility. Can we extend the standard by

adding new features into the specification without
any negative side-effects to older implementations?
We plan to design the GMTI format specification
so that new features can be included into a new
editions of the standard and still permit newer im-
plementations to interwork with already deployed
older implementations. For example, end system is
based on edition A of the protocol and receives an
edition B message.

• Interoperability. Stakeholders should have the free-
dom to select tools, programming language and
computing platform to implement a GMTI system
based on Platform Independent Model (i.e. format
specification). In this study, we used ASN.1 C com-
pilers from two different vendors to create the PSM
from the GMTI PIM. We wanted to observe when
an encoder create from one ASN.1 compiler can
interwork with a decoder create from a different
vendor.

• Completeness and Correctness. We planned to
base the GMTI PIM on an existing STANAG 4607
standard. The study implemented an encoder that
reads GMTI messages formatted in accordance with
STANAG 4607 and outputs BER encoded GMTI
messages. We hypothesized that the BER encoding
of the GMTI message is isomorphic to STANAG
4607 encoded message.

• Performance. In this study, performance is related to
how bandwidth efficient is ASN.1 BER encoding in
comparison with previous GMTI encoding format.
We hypothesized that BER encoding of a GMTI
message will be at least twice as large the present
GMTI format, but still more efficient than text based
ASN.1 encoding methods.

1.5 Outline

The paper will first introduce a short summary of ASN.1.
The section will cover the salient features of ASN.1 no-
tation, concepts and technology. We will next discuss the
GMTI model that we developed using ASN.1 notation.
The section will cover how we mapped STANAG 4607
specification to create GMTI model based on ASN.1
notation. The experiment section covers our approach
to determine if ASN.1 can meet our study’s objectives.
The results section outlines our observation based on

the study’s objectives. We summarizes our findings in
the conclusion and provide recommendations for future
studies.

2 A SHORT OVERVIEW OF ASN.1
In telecommunication and computer networking do-
main, Abstract Syntax Notation One (ASN.1) [4] is stan-
dard that provides a flexible notation to describe your
data structure for encoding, decoding and transmitting
of messages over a network. It is a character based
protocol that provides a set of formal rules for describing
the structure of objects that are independent of machine-
specific encoding techniques. The ASN.1 language is
a precise and formal notation that ensures clarity and
reduces ambiguities.

ASN.1 is a joint ISO/IEC and ITU-T standard that was
originally defined 1984 as part of CCITT X.409:1984. It
was later removed to its own standard and is covered
in X.680 series. The latest available edition is dated 2002
and is backward compatible with 1995 edition.

ASN.1 notation defines the abstract syntax of the mes-
sage that is independent of the way the information is
encoded. In MDE context, ASN.1 notation specifies the
PIM. Below example shows the abstract syntax or PIM
for a Packet Header specified in ASN.1.
PacketHeader ::= SEQUENCE
{
version OCTET STRING (SIZE(2)),
nationality IA5String,
security PacketSecurity,
exerciseIndicator OCTET STRING (SIZE(1)),
platformID IA5String,
missionID Uint32,
jobID Uint32,
...

}

Various ASN.1 encoding rules provide the transfer syn-
tax of the data values whose abstract syntax is described
in ASN.1. Below shows example of a transfer syntax for
a Packet Header in BER format.
30 2F A0 2B 80 02 32 30
81 02 43 41 A2 0C 80 01
06 81 02 43 41 82 03 00
20 00 83 01 00 84 0A 44
49 53 43 55 53 20 31 20
20 85 01 00 86 01 01 A1
00

The standard ASN.1 provides several encoding rules
which are as follows:
• Basic Encoding Rules (BER)
• Canonical Encoding Rules (CER)
• Distinguished Encoding Rules (DER)
• XML Encoding Rules (XER)
• Packed Encoding Rules (PER)
• Generic String Encoding Rules (GSER)
In this study, we were concerned with BER format

but we quickly surveyed the other encoding rules and
provided a comparison in the result section.

ASN.1 with its specific ASN.1 encoding rules facili-
tates the exchange of structured data especially between
applications over networks by describing data structures

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 4

in a manner that is independent of machine architec-
ture and implementation language. Developers would
compile an ASN.1 model to generate implementation
language code for serialization that is specific to the
machine architecture. The generated code defines the
concrete syntax of the data values whose abstract syntax
is described in a model defined by ASN.1. In other
words, the developer generates a PSM from the GMTI
PIM. Figure 2 shows the relationship between the three
discussed ASN.1 syntax concepts. Below displays the
concrete syntax of a Packet Header in the C program-
ming language that an ASN.1 C compiler generated.
/*
* Generated by asn1c-0.9.21 (http://lionet.info/asn1c)

* From ASN.1 module "GMTIF"

* found in "stanag4607-ed3.asn"

*/

#ifndef _PacketHeader_H_
#define _PacketHeader_H_

#include <asn_application.h>

/* Including external dependencies */
#include <OCTET_STRING.h>
#include <IA5String.h>
#include "PacketSecurity.h"
#include "Uint32.h"
#include <constr_SEQUENCE.h>

#ifdef __cplusplus
extern "C" {
#endif

/* PacketHeader */
typedef struct PacketHeader {

OCTET_STRING_t version;
IA5String_t nationality;
PacketSecurity_t security;
OCTET_STRING_t exerciseIndicator;
IA5String_t platformID;
Uint32_t missionID;
Uint32_t jobID;
/*
* This type is extensible,

* possible extensions are below.

*/

/* Context for parsing across buffer boundaries */
asn_struct_ctx_t _asn_ctx;

} PacketHeader_t;

/* Implementation */
extern asn_TYPE_descriptor_t asn_DEF_PacketHeader;

#ifdef __cplusplus
}
#endif

#endif /* _PacketHeader_H_ */

Several standard bodies specify their protocols on
ASN.1. Following are some standards using ASN.1 for
their specification:
• IETF RFC 3280 - Internet X.509 Public Key Infras-

tructure
• IETF RFC 3525 - Media Gateway Control
• IETF RFC 4511 - Lightweight Directory Access Pro-

tocol
• IETF RFC 3411 - Simple Network Management Pro-

tocol (SNMP)
• ITU-T X.400 - Electronic Mail
• ITU-T H.323 - Packet-Based Multimedia Communi-

Fig. 2. A figure showing the relationship between the
three ASN.1 syntax concepts.

Abstract Syntax
GMTI Model

Concrete Syntax
C on Windows

Concrete Syntax
Java on Linux-� Transfer Syntax

BER encoded GMTI Message

��
��
Compile

?

? ?

cation Systems
The Internet Engineering Task Force (IETF) specified

some of their RFC using ASN.1 with human readable
definitions associated with the model. There exist appli-
cations that extract ASN.1 model from the RFC. Later
developers feed the extract model into an ASN.1 com-
piler to generate code for encoding and decoding.

2.1 Basic Encoding Rules (BER)

This sub-section provides a short overview of BER
transfer syntax, which ASN.1 describes in ITU-T Rec.
X.690 (BER, CER and DER) [5] standard. We mostly
experimented with BER transfer syntax in this study.

The BER transfer syntax always has the format of a
triplet TLV, often referred as Tag, Length, Value as in
Figure 3(a). The Motion Imagery community barrows
heavily on BER for metadata serialization, which they
call KLV encoding. However, Motion Imagery com-
munity disregarded the abstract syntax component of
ASN.1. Developers who are familiar with KLV encoding
will understand BER encoding easily.

All the fields in T, L and V are series of octets. The
value V can be a triplet TLV creating a recursive tree
data structure, where interior nodes contain constructed
values and the leaf nodes hold values of basic build-in
types such as INTEGER or STRING (see Figure 3(b)).
The transfer syntax is octet-based (i.e. binary based)
and self-delimited since the field L provides a means
of determining the length of each TLV triplet.

The T(ag) octets correspond to the encoding of the
triplet’s value type. One of the bits specifies the form of
the V content octet as either basic or constructed. The tag
octet is unique in its parent context. Generally, one octet
is enough for a T field.

2.2 Alternative Approaches

Character-based notation provide an alternate approach
to specify a communication protocol. Some of these
character-based protocols, such as HTTP or SMTP, define
messages using text tags and values based on Aug-
mented Backus-Naur Form (ABNF) [8] notation. The
definition also defines the encoding, which is in text.
XML standards is another form of a character-based

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 5

Fig. 3. BER transfer syntax (TLV format)

T L V

Tag

octets

Length

octets

Content

octets

(a) Triplet TLV

T L VT L T L VT L

(b) Recursive principle

protocol. ASN.1 provides an XML encoding rule called
XER that attempts to bridge the gap between binary to
textual encoding. ITU-T Rec. X.694 [6] also provides rules
to map XSD Schema to ASN.1 in order to exploit ASN.1
encoding rules. Therefore, models based on XSD Schema
or UML can leverage ASN.1 encoding rules.

Character-based protocols offer transparency advan-
tage over binary-base protocols. One only needs a text
editor to see the content of a character-based mes-
sage. However, character-based protocols consume more
bandwidth than binary-based protocols. The result sec-
tion will compare character and binary base encoding.

We plan to conduct future studies in other transfer
syntax protocols such as Fast Infoset (FI) [13] and Efficient
XML Interchange (EXI) [14], and compare them with
ASN.1 encoding rules. These protocols specify how to
binary encode XML documents.

We hypothesized that binary encode XML GMTI mes-
sages will impact runtime serialization process nega-
tively. The reason is that the encoder has to create
an XML document in memory or on the hard drive,
which consumes CPU and IO resources. Then the XML
document has to be serializes as binary encoded XML
document before transmission, which consumes more
CPU and IO resources. In contrast to ASN.1 encoders
that serialize a GMTI message immediately using one the
ASN.1 binary-based encoding rules, which utilize less
computing resources. We plan to study this in the future
to determine if this hypothesis is true.

3 GMTI MODEL

For this study, we created a specification of a GMTI
format using ASN.1 (See appendix A). The GMTI format
specification is based on STANAG 4607 edition 3. The
mapping from the STANAG 4607 to our ASN.1 version
of GMTI format was fairly easy and straight forward.
Table 1 outlines how we mapped objects and types
defined in STANAG 4607 to ASN.1 notation.

We only described a subset what is defined in
STANAG 4607. The GMTI specification in appendix A,
we specified Packet Header, Mission Segment, Dwell Seg-
ment, Job Definition, and Test and Status Segment. For each
segment, we fully defined their STANAG 4607 definition.

In the model module definition, we enabled automatic
tagging and extensibility implied features. By enabling

TABLE 1
This table shows the mapping for objects and types

defined in STANAG 4607 to ASN.1 notation.

STANAG 4607 ASN.1
GMTI Message SEQUENCE
Packet Header SEQUENCE

Segment CHOICE
Mission Segment SEQUENCE

Dwell Segment SEQUENCE
Job Definition Segment SEQUENCE

Test and Status Segment SEQUENCE
Alphanumeric IA5String or OCTET STRING de-

pending on the field
Integer INTEGER with subtyping to con-

strain valid values
Binary Angles REAL

Flags BIT STRING
Enumeration ENUMERATION

Fig. 4. The diagram showing the basic experimental
setup where the rectangles represent files and the circles
represent applications.

GMTI -��
��

encoder - BER -��
��

decoder - Text

these features, the model designer is relieved from bur-
den of explicitly assigning tags and deciding which
objects can be extended.

Length fields defined in STANAG 4607 are unmapped
because they are not required. The BER encoding rules
provided this automatically for all syntactical elements
in an GMTI message. We used the ASN.1 OPTIONAL
keyword to denote which elements are optional in a
GMTI message. Therefore, existence mask, like the one
defined in a Dwell Segment, is absented in the ASN.1
GMTI model.

4 EXPERIMENTAL APPROACH

This section covers the experimental approach we em-
ployed for our study. The study’s objectives were deal-
ing mostly with ASN.1 notation and transfer syntax.
Therefore, how well ASN.1 transfer syntax will operate
over TCP/IP protocol stack and in a distributed network
environment will be answered in future studies.

The basic experimental framework is fairly simple
and can be replicated easily. We created several encoder
and decoder command line interface (i.e. console) ap-
plications that accept files using the console input and
produce their results onto console output. With this
approach, interprocess communication between applica-
tions is achieved by file passing or chaining using pipes.
Figure 4 shows the basic experimental framework.

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 6

TABLE 2
Sample files sn that were used in the study.

Samples Size Remarks
sn (Bytes)
s1 249 A GMTI message containing a Mission, Job

Definition and Dwell segment with six Target
Reports from a GMTI simulator.

s2 223 A GMTI message containing a Job Definition
and Dwell segment with two Target Reports
from a GMTI simulator. See appendix B to
see its content.

s3 203,493 A GMTI message containing Dwell segment
with 6776 Target Reports from a French Hori-
zon sensor.

s4 42,800 A GMTI message containing 24 Dwell seg-
ments and 5166 Target Reports from a live
Heron sensor.

s5 81,414 A GMTI message containing 50 Dwell seg-
ments and 9,814 Target Reports from a live
Heron sensor.

s6 2,698 A GMTI message containing 6 Dwell seg-
ments and 277 Target Reports from a live
Heron sensor.

s7 198,370 A GMTI message containing 3,929 Dwell
segment and 380 Target Reports from a live
PST sensor.

s8 443 A GMTI message containing a Mission, Job
Definition and six Dwell segment from a live
PST sensor.

s9 1,744,886 A file containing 1,421 GMTI messages from
a UK sensor.

s10 1,135,957 A file containing 931 GMTI messages from a
NATO sensor simulator.

s11 1,085,382 A file containing 900 GMTI messages from a
NATO sensor simulator.

s12 5,283,195 A file containing 14,168 GMTI messages from
a live PST sensor, which was extracted from
a Wireshark file that captured nearly an hour
of network traffic.

4.1 Samples
In the study, we used an assortment of GMTI samples
from various systems and nations. The GMTI samples
were stored in binary files. Table 2 outlines the sample’s
file identifier, size and content.

4.2 ASN.1 Compilers
In this study, we experimented with ASN.1 C compilers
that were developed by two different vendors. This
section will provide a high-level overview of the two
compilers we used in this study. There exists a variety
of vendors that supply ASN.1 compiler for various pro-
gramming languages, which we hope to research in the
future.

4.2.1 Open Source ASN.1 Compiler
This is a freely available open source compiler that
generates C source code from ASN.1 specifications. A
single individual named Lev Walkin [17] developed
this compiler. We like this compiler because it is free
and source code is available for easy debugging and
inspection. The code is portable across multiple plat-
forms but for Windows, the compiler and generated code
must be build under Cygwin [16], a Linux development

TABLE 3
Open source ASN.1 compiler’s capabilities

Feature Capabilities
Encoding BER (CER,DER), XER, PER (unaligned

only)
Target Language C programming language
License BSD
Cost free

environment for Windows. We successfully created an
encoder and decoder application fairly easily, which
we will name eoss(x) and doss(x) respectively for this
paper. Table 3 shows a short summary of this compiler’s
capabilities.

4.2.2 ASN Lab Compiler

ASN Lab [18] sells a commercial ASN.1 compiler. To
use their compiler you need Eclipse and download their
development tools (ADT), which is a collection of Eclipse
plugins. In Eclipse, you create an ASN.1 project con-
taining ASN.1 specification. The Eclipse ASN.1 plugins
provides several convenient editing features, such as
coding folding, outline views, text hovering, rename
refactoring and others. We recommend their develop-
ment tools for writing a ASN.1 specification because
these editing features. Once you completed your ASN.1
specification, you invoke Eclipse build feature which
automatically translates your specification into C code
that can be integrated into your application.

To build (i.e. link) our applications with the generated
C code, we needed to download their ASN.1 C runtime
library, which they sell but provide a free trial version
for limited time period. However, ASN Lab does not
provide the source code for their C runtime library,
which makes debugging and inspection impossible.

ASN Lab sells their ASN.1 C compiler product, which
includes source code, documentation, technical support
and unlimited updates for $12,000 USD.

In our study, we were able to create an encoder
application but fail to create a decoder application. Poor
documentation and lack of source code prevented us
from creating our decoder application. We assumed if
we had a full licence version of their product, we would
be able to create a decoder application. In this paper, we
will refer to this encoder as easnlab(x).

During our study, we discovered a bug in how they
BER encode REAL values. We reported the issue, which
ASN Lab promptly fixed the bug and provided a new
library the next day.

Table 4 shows a short summary of this compiler’s
capabilities.

4.3 Source Code and Sample Files

The source code for encoder and decoder applications,
and sample files are available upon request.

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 7

TABLE 4
ASN Lab ASN.1 compiler’s capabilities

Feature Capabilities
Encoding BER (CER,DER), PER (align and un-

aligned)
Target Language C programming language
License Commercial
Cost $12,000 USD

5 RESULTS

This section outlines our experimental observations
based on the study’s objectives.

5.1 Extensibility
Can we have deployed systems based on different edi-
tions of a GMTI format interwork together without
issues? We want decoders to read older versions of
the GMTI message, and also be able to ignore newer
introduced elements when reading later versions of a
GMTI message.

In ASN.1 notation, protocol designers can define
which components in the specification are extensible.
To indicate that a type is extensible, one inserts an
extension maker “. . . ” in its definition. In ASN.1, the
only extensible types are ENUMERATED, SEQUENCE,
SET and CHOICE.

For this experiment, we extended the ASN.1 GMTI
model outline in appendix A as follows:

1) Insert new basic component, foobar, of type INTE-
GER into the Packet Header definition, which is of
type SEQUENCE.

2) Insert new constructed component, ExtSegment,
which contains two elements of type INTEGER
and IA5String. This will be a new GMTI Segment
type that will extent the Segment definition of type
CHOICE.

When decoding messages containing extensible type
values, there are two cases:
• Case A. Unexpected extensions are present.
• Case B. The expected extensions are absent.
The following subsection covers the two cases that a

decoder can encounter.

5.1.1 Case A
This experiment tries to prove that ASN.1 decoders can
process GMTI message based on a newer edition of a
specification. We built a new encoder, e′oss(x), based on
a specification mention above. In the new encoder, we
hard coded these new components, foobar and ExtSeg-
ment, to be insert in every GMTI message. Using the
samples outline in table 2 and the new encoder, we
created new BER encoded GMTI files containing the new
components.

The decoder, doss(x) represents an older deployed
system based on previous edition of the specification. We
feed doss(x) with newly extended GMTI files that e′oss(x)

TABLE 5
Recorded observation for the extensibility experiment.

First column sn are sample files outlined in table 2. The
encoder inputs sn and outputs s′n, which decoder reads.
The last column informs if the decoder can process the

file s′n successfully.

Case A
sn Encoder Decoder Process?

s1 e′oss(s1) doss(s′1) Yes

s2 e′oss(s2) doss(s′2) Yes

s8 e′oss(s8) doss(s′8) Yes

Case B
sn Encoder Decoder Process?

s1 eoss(s1) d′oss(s
′
1) Yes

s2 eoss(s2) d′oss(s
′
2) Yes

s8 eoss(s8) d′oss(s
′
8) Yes

produced. The decoder successfully transform the input
file without issues. Our recorded observation is outlined
in table 5.

5.1.2 Case B
This experiment tries to prove that a newer decoder
can process GMTI messages based on an older edition
of a specification. We build a new decoder, d′oss(x),
based on the new specification. Using encoder, eoss(x),
that is based on older specification, we generated BER
formatted GMTI message file. Then we inputted these
files into the new decoder, d′oss(x), and recorded our
observation.

We observed that the new decoder successfully pro-
cess a GMTI message based on an older specification.
Our recorded observation is outlined in table 5.

5.2 Interoperability

Can GMTI systems that were implemented using dif-
ferent ASN.1 compilers work together? This experiment
attempts to answer this question.

As stated previously in the paper, we created two
encoders, eoss(x) and easnlab(x), from two different ven-
dors and one decoder, doss(x). To proof encoders are
interoperable, the decoder, doss(x), should be able to
transform the encoders’ output files exactly the same.

Let x be a file containing GMTI message encoded
in accordance with STANAG 4607. In our limited ex-
periment, x ∈ S where S = {s1, s2, s3, s4, s5, s6, s7, s8}
defined in table 2.

We inputted x into both encoders, eoss(x) and
easnlab(x), that outputted files containing BER encoded
GMTI message x1 and x2 respectively. The decoder,
doss(x), transform these files to a GSER encoded files,
y1 and y2. See appendix B for an example GSER en-
coded GMTI message. If y1 = y2 then encoders are

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 8

Fig. 5. The basic layout for the interoperability experi-
ment. If decoder outputs y1 = y2, then encoders eoss(x)
and easnlab(x) are interoperable.

x

-

- eoss(x)

easnlab(x)

x1-

x2-

doss(x1)

doss(x2)

?

y1

-y2 �
@
@
�

diff -y1 = y2 true

?
y1 6= y2

false

interoperable. Figure 5 displays the basic layout of this
experiment. We used UNIX based diff utility to perform
the comparison between y1 and y2.

We observed that the encoders eoss(x) and easnlab(x)
outputted well-formed and valid BER encoded GMTI
files for all x ∈ S but x1 6= x2. In other words, both
encoders generated different BER encoded bitstreams
from the same GMTI file.

However, when x1 and x2 were transformed by de-
coder doss(x) to produce y1 and y2, we observed y1 = y2
for all x ∈ S. Therefore, in this experiment, encoder
eoss(x) and easnlab(x) are interoperable. More study is
required to determine this is universally true for all
ASN.1 compilers.

5.3 Completeness and Correctness

For this experiment, we manually verified by comparing
the content of the source GMTI file against encoder
outputted BER or GSER files. From the sample set, we
were successful to map 100% all GMTI message syntax
elements to BER or GSER. We inspected all the values of
each syntax element that the encoder produced against
the source sample and observed that the values were
equivalent. See appendix B for an example encoder
output of a GMTI message.

During the experiment, we observed some source
samples files outline in table 2 did not conform to the
standard. This caused the encoders to produce semanti-
cally incorrect BER encoded GMTI message. To generate
well-formed GMTI messages, we modified the encoders’
parser to handle these exceptions. This was somewhat
expected because developers must hand-craft code to
implement encoders and decoders based on STANAG
4607, which can be error prone. We hope employing
a MDE approach would reduce hand-crafted code and
future systems will be based on machine generated
encoders and decoders, which could increase system
predictability and reliability.

We plan in future studies to develop a BER de-
coder application to populate a Coalition Share Database
(CSD). We then can compare the BER encoded message
against GMTI encoded message in the CSD and see if
they are equivalent or equal.

TABLE 6
Table shows the file size in bytes and ratio of various

encoding rules that the encoder eoss(x) generated and
compares them with the files outlined in table 2.

sn BER Ratio GSER Ratio XER Ratio
s1 453 1.82 4,143 16.64 5,885 23.64
s2 395 1.77 3,417 15.32 4,883 21.89
s3 441,542 2.17 6,177,699 30.36 8,421,840 41.39
s4 120,146 2.81 1,476,816 34.51 1,992,175 46.55
s5 228,357 2.80 2,807,263 34.49 3,786,992 46.52
s6 7,151 2.65 84,877 31.46 114,976 42.62
s7 316,680 1.60 2,897,255 14.61 4,091,770 20.63
s8 723 1.63 6,201 13.99 8,818 19.91
s9 3,580,379 2.05 49,300,496 28.25 66,716,021 38.24
s10 2,326,475 2.05 32,063,316 28.22 43,393,403 38.20
s11 2,227,298 2.05 30,611,738 28.2 41,428,292 38.17
s12 8,437,245 1.60 74,654,061 14.13 105,354,262 19.94

Average 2.08 24.18 33.14

5.4 Performance

In this study, performance is related to the size of the
files produced by the encoder applications. Table 6 and
7 shows the size of each file that encoder applications,
eoss(x) and easnlab(x), produced. We feed these encoders
with files containing GMTI formatted message(s) that are
outlined in table 2.

We hypothesized that BER encoding to be less effi-
cient than STANAG 4607 encoding in size, which was
true. We were surprised that the BER encoded GMTI
messages was not much larger than the original in
some cases. Generally, both encoders produced a GMTI
message bitstream that were approximately 1.98 times
larger than the original. Encoder easnlab(x) produced
slightly smaller files than eoss(x) when serializing a
GMTI message using BER encoding. See table 6 and 7
to compare.

One would assume the that two encoders would
produce files of equal size when using the same BER
encoding method, but that was not the case. We dis-
covered that the two encoders BER serialize values of
type ASN.1 REAL differently, which is an explanation
for the size differences. Both encoders generated files
that conformed to ASN.1 BER standards.

As we expected, the character-based encoding rules
produced larger file size. GSER encoded messages were
23.92 times larger than the original GMTI message while
XER encoded messages were 32.89 times larger.

BER encoding may not be as efficient as GMTIF en-
coding but we gain improved predictability, interoper-
ability and extensibility. We believe these advantages
out weight the GMTIF size advantage. When comparing
BER encoding with other text-based encoding, there is
an substantial size advantage. We plan to study PER
encoding, which claims to be more size efficient than
BER, in future studies.

We also wanted to know how efficient the code that
is generated from these ASN.1 compilers. Using sample
GMTI file s12 described in table 2, we feed this file
into the encoders and recorded the processing time. The

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 9

TABLE 7
Table compares the file size in bytes and ratio of BER
encoding that the encoder easnlab(x) generated and

compares them with the files defined in table 2.

sn GMTIF BER Ratio
s1 249 433 1.74
s2 223 377 1.69
s3 203,493 429,624 2.11
s4 42,800 95,441 2.23
s5 81,414 181,498 2.23
s6 2,698 5778 2.14
s7 198,370 295,751 1.49
s8 443 687 1.55
s9 1,744,886 3,479,807 1.99
s10 1,135,957 2,261,355 1.99
s11 1,085,382 2,165,201 1.99
s12 5,283,195 7,977,169 1.51

Average 1.89

TABLE 8
Table outlines the processing time of the two encoders

when generating BER encoded GMTI messages.

en(x) Processing Time
Files Message eoss(x) easnlab(x)
sn Count (seconds) (seconds)
s9 1421 5 2
s10 931 3 1
s11 900 3 1
s12 14,168 6 3

sample file s12 contains 14,168 GMTI messages that was
from a Wireshark file capturing nearly an hour (3,582
seconds) of network traffic. Both encoders process this
file extremely fast. The encoder, eoss(x), took six (6)
seconds to complete, while encoder, easnlab(x) took three
(3) seconds. We can safely imply that ASN.1 based en-
coders will perform within time constraint requirements
that are necessary for proper GMTI system behaviour.
This assumption will be need to be confirm in future
studies. Table 8 outlines our recorded observations on
processing times when the two encoders read GMTI
samples containing more than one message.

6 CONCLUSION

This paper presented a study to determine if Model
Driven Engineering can improve GMTI system devel-
opment life-cycle. We designed and developed a sim-
ple GMTI system using ASN.1 for specification and
encoding for our study. To explore this approach, we
conduct various experiments based on four objectives:
1) extensibility, 2) interoperability, 3) completeness and
correctness, and 4) performance.

We first expressed a GMTI format specification based
on STANAG 4607 using ASN.1 notation, which defines
the abstract syntax of the GMTI message. ASN.1 pro-
vides a notation to describe the message format that is
independent of encoding technique. From the specifica-
tion, we were able to implement encoder and decoder
applications from generated code that ASN.1 compiler

produced, which proved save time and development
effort.

With these encoder and decoder applications, we con-
ducted experiments based on the objectives. Our exper-
imental observations were very encouraging.

We discovered that encoders and decoders based on
generated ASN.1 code supported extensibility. Encoders
and decoders were able to interwork together with GMTI
messages of different editions. We will investigate al-
ternative approaches, such as binary encoded XML in
future studies.

We used two different ASN.1 compiler vendors to de-
termine interoperability. Again, encoders and decoders
were able to interwork together with GMTI messages
from different implementations. We plan to test other
ASN.1 compiler vendors and implementation languages,
such Java, in future studies.

We found that ASN.1 notation is rich enough (com-
plete) to describe a GMTI specification based on
STANAG 4607. We manually validated and verified
(correctness) that the BER encoded GMTI messages was
equivalent to a GMTI message that is formatted in ac-
cordance with STANAG 4607. In future studies, we plan
to automate this process by transmitting BER encoded
GMTI messages to a CSD.

We compared various ASN.1 encoding techniques. We
observed that BER encoding created a GMTI bitstream
that was approximately 1.9 times larger than STANAG
4607 encoded bitstreams. ASN.1 provides other binary-
based encoding rules that are more size efficient than
BER that we would like to investigate in future studies.

We quickly profiled the encoders processing speed.
The encoders were able to process a 14,168 GMTI mes-
sages that represented nearly an hour of network traffic
in less than 6 seconds. We are confident that encoders
based on generated ASN.1 compiler code will be able to
meet time constraints that are imposed by most GMITI
systems. However, we plan to prove this assertion in
future studies.

We recommend that the GMTI community should take
advantage of Model Driven Engineering approach for
protocol specification. GMTI format specification should
be expressed in a modelling language that is indepen-
dent of encoding techniques. ASN.1 is one such notation
that also offers a number of encoding rules for message
serialization, such as BER. We hope to continue our
studies in this area provide more information in the near
future.

APPENDIX A
GMTI SPECIFICATION

This appendix outlines a limited ASN.1 specification of
STANAG 4607 Edition 3. We used this model to generate
our code for both encoder and decoder applications.
-- ASN.1 encoding of STANAG 4607 Edition 3 --
-- Ground Moving Target Indicator Format (GMTIF) --

GMTIF DEFINITIONS

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 10

AUTOMATIC TAGS EXTENSIBILITY IMPLIED::=
BEGIN

GMTIMessage ::= SEQUENCE
{
packetHeader PacketHeader,
segments SEQUENCE OF Segment

}

PacketHeader ::= SEQUENCE
{
version OCTET STRING (SIZE(2)),
nationality IA5String,
security PacketSecurity,
exerciseIndicator OCTET STRING (SIZE(1)),
platformID IA5String,
missionID Uint32,
jobID Uint32,
...

}

PacketSecurity ::= SEQUENCE
{
classification ENUMERATED
{

topSecret (1),
secret (2),
confidential(3),
restricted (4),
unclassified(5),
reserved (6),
...

} DEFAULT unclassified,

classificationSystem IA5String,

code BIT STRING
{

noContract (0), -- bit position 0 is set to 1 --
orcon (1),
propin (2),
winintel (3),
nationalOnly (4),
limdis (5),
fouo (6),
efto (7),
limOffUse (8),
nonCompartment (9),
specialControl (10),
specialIntel (11),
warningNotice (12),
relNato (13),
rel4Eyes (14),
rel9Eyes (15)

},
...

}

Segment ::= CHOICE
{
missionSegment MissionSegment,
dwellSegment DwellSegment,
jobDef JobDefinitionSegment,
testAndStatus TestAndStatusSegment,
...

}

MissionSegment ::= SEQUENCE
{
missionPlan IA5String,
flightPlan IA5String,
platformType ENUMERATED
{
unidentified (0),
acs (1),
alr-M (2),
sentinel (3),
rotaryWingRadar (4),
globalHawk-Navy (5),
horizon (6),
e-8 (7),
p-3C (8),
predator (9),
radarsat2 (10),
u-2 (11),
e-10 (12),

ugs-single (13),
ugs-cluster (14),
groundBased (15),
uav-Army (16),
uav-Marines (17),
uav-Navy (18),
uav-AirForce (19),
globalHawk-AirForce(20),
globalHawk-Australia (21),
globalHawk-Germany (22),
paulRevere (23),
marinerUAV (24),
bac-111 (25),
coyote (26),
kingAir (27),
limit (28),
nrl-NP-3B (29),
sostart-X (30),
watchKeeper (31),
ags (32),
stryker (33),
ags-Hale-UAV (34),
sidm (35),
reaper (36),
warriorA (37),
warrior (38),
twinOtter (39),
other (255),
...
-- 40 to 254 unused --

} DEFAULT unidentified,
platformConfig IA5String,
refTime ReferenceTime,
...

}

ReferenceTime ::= SEQUENCE
{
year Uint16,
month Uint8,
day Uint8

}

DwellSegment ::= SEQUENCE
{
revisitIndex Uint16,
dwellIndex Uint16,
lastDwellofRevisit BOOLEAN,
targetReportCount Uint16,
dwellTime Uint32, -- milliseconds --
sensorPosition Position,
scaleFactor Scale OPTIONAL,
senPosUncertainty SensorPositionUncertainty OPTIONAL,
sensorTrack REAL OPTIONAL,
sensorSpeed INTEGER(0..8000000) OPTIONAL,
sensorVerticalVelocity INTEGER(-128..127) OPTIONAL,
sensorTrackUncertainty INTEGER(0..45) OPTIONAL,
sensorSpeedUncertainty Uint16 OPTIONAL,
sensorVerticalVelocityUncertainty Uint16 OPTIONAL,
platformOrientation Orientation OPTIONAL,
dwellArea DwellArea,
sensorOrientation Orientation OPTIONAL,
mdv INTEGER(0..255) OPTIONAL,
targetReports SEQUENCE OF TargetReport,
...

}

Position ::= SEQUENCE
{
latitude REAL,
longitude REAL,
altitude INTEGER

}

Scale ::= SEQUENCE
{
latScale REAL,
lonScale REAL

}

SensorPositionUncertainty ::= SEQUENCE
{
alongTrack INTEGER(0..1000000),
crossTrack INTEGER(0..1000000),
altitude Uint16

}

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 11

Orientation ::= SEQUENCE
{
heading REAL,
pitch REAL,
roll REAL

}

DwellArea ::= SEQUENCE
{
centerLat REAL,
centerLon REAL,
rangeHalfExtent REAL,
dwellAngleHalfExtent REAL

}

TargetReport ::= SEQUENCE
{
mtiReportIndex Uint16 OPTIONAL,
targetLocation TargetLocation OPTIONAL,
targetVelocityLOS Int16 OPTIONAL,
targetWrapVelocity Uint16 OPTIONAL,
targetSNR Int8 OPTIONAL,
targetClassification ENUMERATED
{
noInfo-LiveTarget (0),
trackedVeh-LiveTarget (1),
wheeledVeh-LiveTarget (2),
rotaryWing-LiveTarget (3),
fixedWing-LiveTarget (4),
stationaryRotary-LiveTarget(5),
maritime-LiveTarget (6),
beacon-LiveTarget (7),
amphibious-LiveTarget (8),
person-LiveTarget (9),
vehicle-LiveTarget (10),
animal-LiveTarget (11),
largeMultiReturn-LiveLandTarget (12),
largeMultiReturn-LiveMaritimeTarger (13),
-- 14-125 reserved --
other-LiveTarget (126),
unknown-LiveTarget (127),
noInfo-SimTarget (128),
trackedVeh-SimTarget (129),
wheeledVeh-SimTarget (130),
rotaryWing-SimTarget (131),
fixedWing-SimTarget (132),
stationaryRotary-SimTarget (133),
maritime-SimTarget (134),
beacon-SimTarget (135),
amphibious-SimTarget (136),
person-SimTarget (137),
vehicle-SimTarget (138),
animal-SimTarget (139),
largeMultiReturn-SimLandTarget (140),
largeMultiReturn-SimMaritimeTarger (141),
taggingDevice (143),
-- 143-253 reserved --
other-SimTarget (254),
unknown-SimTarget (255),
...

} DEFAULT noInfo-LiveTarget,
targetClassProbability INTEGER(0..100) OPTIONAL,
targetMeasurmentUncertainty TargetMeasurementUncertainty OPTIONAL,
truthTag SEQUENCE
{
application Int8,
entity Uint32

} OPTIONAL,
targetRadarCrossSection Int8 OPTIONAL,
...

}

TargetLocation ::= SEQUENCE
{
hiResLat REAL OPTIONAL,
hiResLon REAL OPTIONAL,
deltaLat Int16 OPTIONAL,
deltaLon Int16 OPTIONAL,
geodeticHeight INTEGER(-1000..32767) OPTIONAL

}

TargetMeasurementUncertainty ::= SEQUENCE
{
slantRange Int16 OPTIONAL,
crossRange Int16 OPTIONAL,

height Uint8 OPTIONAL,
targetRadialVelocity INTEGER(0..5000) OPTIONAL

}

JobDefinitionSegment ::= SEQUENCE
{
jobID INTEGER(1..4294967295),
sensorID SEQUENCE
{
type ENUMERATED
{
unidentified,
other,
hisar,
astor,
rotaryWingRadar,
globalHawkSensor,
horizon,
apy-3,
apy-6,
apy-8,
radarsat2,
asars-2a,
tesar,
mp-rtip,
apg-77,
apg-79,
apg-81,
apy-6v1,
dpy-1,
simd,
limit,
tcar,
lsrsSensor,
ugsSingleSensor,
ugsClusterSensor,
imasterGmti,
anzpy-1,
vader,
noStatement(255),
...
-- 28-254 Available for future use --

},
model IA5String,
...
},
targetFilteringFlag BIT STRING(SIZE(1)),
priority Uint8,
boundingArea SEQUENCE
{
ptALat REAL,
ptALon REAL,
ptBLat REAL,
ptBLon REAL,
ptCLat REAL,
ptCLon REAL,
ptDLat REAL,
ptDLon REAL,
...
},
radarMode ENUMERATED
{
unspecified (0),
mti(1),
hrr(2),
uhrr(3),
hur(4),
fti(5),
-- 6-10 available for future use --
attackControl-SATC(11),
attackControl(12),
satc(13),
attackPlanning-SATC(14),
attackPlanning(15),
medResSecSearch(16),
lowResSecSearch(17),
wideAreaSearch-GRCA(18),
wideAreaSearch-RRCA(19),
attackPlanning-tracking(20),
attackControl-tracking(21),
-- 22-30 available for future use --
wamti-asars-aip(31),
courseResSearch(32),
medResSearch(33),
highResSearch(34),
pointImg(35),

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 12

smti(36),
repetitivePtImg(37),
monopulseCal(38),
-- 39-50 available for future use --
search(51),
emtiWideFrameSearch(52),
emtiNarrowFrameSearch(53),
emtiAugmentedSpot(54),
wamti-asars-2(55),
-- 56-60 available for future use --
gmtiPpi(61),
gmtiExpanded(62),
nss(63),
sbs(64),
wa(65),
-- 66-80 available for future use --
grca(81),
rrca(82),
sectorSearch(83),
horizonBasic(84),
horizonHighSen(85),
horizonBurnThru(86),
cresoAcquistion(87),
cresoCount(88),
-- 89-93 available for future use --
wasMtiExo(94),
wasMtiEndoExo(95),
ssMtiExo(96),
ssMtiEndoExo(97),
-- 98-99 available for future use --
testStatus(100),
mtiSpotScan(101),
mtiArcScan(102),
hrrMtiSpotScan(103),
-- 105-110 available for future use --
grca-globalHawk(111),
rrca-globalHawk(112),
gmti-hrr(113),
-- 114-119 available for future use --
smallAreaGmti (120),
wideAreaGmti(121),
dismountGmti(122),
hrrGmti(123),
...
-- 124-255 available for future use --

},
nominalRevisitInterval Uint16,
nominalSensorPositionUncertainty SEQUENCE
{
alongTrack Uint16,
crossTrack Uint16,
altitude Uint16,
trackHeading INTEGER(0..45),
sensorSpeed Uint16,
...

},
nominalSensorValue SEQUENCE
{
slantRangeStdDev Uint16,
crossRangeStdDev REAL,
targetVelocityLOS Uint16,
mdv Uint8,
detectionProb Uint8,
falseAlarmDensity Uint8,
...

},
terrainElevModelUsed ENUMERATED
{
unspecified(0),
dted0(1),
dted1(2),
dted2(3),
dted3(4),
dted4(5),
dted5(6),
srtm1(7),
strm2(8),
dgm50m745(9),
dgm250(10),
ithd(11),
sthd(12),
sedris(13),
...
-- 14-255 reserved --

},
geoidModelUsed ENUMERATED

{
unspecified(0),
egm96(1),
geo96(2),
flatEarth(3),
...
-- 4-255 reserved --

}
}

TestAndStatusSegment ::= SEQUENCE
{
jobID Uint32,
revisitIndex Uint16,
dwellIndex Uint16,
dwellTime Uint32,
hardwareStatus BIT STRING
{
spareh (0),
spareg (1),
sparef (2),
calibrationMode (3),
datalink (4),
processor (5),
rfElectronics(6),
antenna(7)

},
modeStatus BIT STRING
{

spareh (0),
spareg (1),
sparef (2),
sparee (3),
temperatureLimitExceeded (4),
elevationLimitExceeded (5),
azimuthLimitExceeded (6),
rangeLimitExceeded (7)

},
...

}

Uint16 ::= INTEGER(0..65535) -- 16-bit unsigned integer --

Uint32 ::= INTEGER(0..4294967295) -- 32-bit unsigned integer --

Int16 ::= INTEGER(-32768..32767)

Int8 ::= INTEGER(-128..127)

Uint8 ::= INTEGER(0..255)

END

APPENDIX B
GMTI MESSAGE EXAMPLE

This appendix shows the content of a GSER encoded
GMTI message from our sample set. This GMTI message
contains a packet header, job definition segment and
a dwell segment with two target reports. The decoder,
doss(x), produced this message.
GMTIMessage ::= {

packetHeader: PacketHeader ::= {
version: 31 30
nationality: CA
security: PacketSecurity ::= {

classification: 5
classificationSystem: CA
code: 00 00

}
exerciseIndicator: 81
platformID: UAV_JM
missionID: 0
jobID: 0

}
segments: segments ::= {

MissionSegment ::= {
missionPlan: Mission Plan
flightPlan: Flight Plan
platformType: 0

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 13

platformConfig: null
refTime: ReferenceTime ::= {

year: 2010
month: 4
day: 30

}
}
JobDefinitionSegment ::= {

jobID: 0
sensorID: sensorID ::= {

type: 0
model: null

}
targetFilteringFlag: 00
priority: 1
boundingArea: boundingArea ::= {

ptALat: 31.529605865478516
ptALon: 64.918190002441406
ptBLat: 31.709268569946289
ptBLon: 64.917991638183594
ptCLat: 31.709268569946289
ptCLon: 65.129173278808594
ptDLat: 31.529605865478516
ptDLon: 65.128974914550781

}
radarMode: 1
nominalRevisitInterval: -11856
nominalSensorPositionUncertainty:

nominalSensorPositionUncertainty ::= {
alongTrack: -1
crossTrack: -1
altitude: -1
trackHeading: 255
sensorSpeed: -1

}
nominalSensorValue: nominalSensorValue ::= {

slantRangeStdDev: 2500
crossRangeStdDev: 1.99951171875
targetVelocityLOS: -1
mdv: -1
detectionProb: -1
falseAlarmDensity: -1

}
terrainElevModelUsed: 0
geoidModelUsed: 0

}
DwellSegment ::= {

revisitIndex: 159
dwellIndex: 0
lastDwellofRevisit: TRUE
targetReportCount: 2
dwellTime: 69438000
sensorPosition: Position ::= {

latitude: 31.619480133056641
longitude: 65.023582458496094
altitude: 3161

}
dwellArea: DwellArea ::= {

centerLat: 31.651552200317383
centerLon: 65.061264038085938
rangeHalfExtent: 4.008196830749512
dwellAngleHalfExtent: 135.0

}
targetReports: targetReports ::= {

TargetReport ::= {
mtiReportIndex: 0
targetLocation: TargetLocation ::= {

hiResLat: 31.614080429077148
hiResLon: 65.048255920410156
geodeticHeight: 31

}
targetClassification: 255

}
TargetReport ::= {

mtiReportIndex: 1
targetLocation: TargetLocation ::= {

hiResLat: 31.614080429077148
hiResLon: 65.006004333496094
geodeticHeight: 31

}
targetClassification: 255

}
}

}
}

}

APPENDIX C
COST ANALYSIS OF GENERATED CODE

If we were to implement a GMTI encoder and decoder
code by hand, how many developers do we need and
long will it take? This appendix tries to answer these
questions. To help us answer these questions, we used a
well known software cost estimation model, COCOMO
81 Intermediate Mode [11], for our level of effort analy-
sis.

Usually, when doing a software cost estimate, the
number of lines of code of the final product is unknown
and is estimated based on number of Function Points. In
our analysis, the ASN.1 compiler provided us the exact
number of lines of code. Therefore, to calculated level
of effort, we first count the number of lines of code that
was generated by an ASN.1 compiler. Let SLOC be the
number of single line of code (SLOC) that a compiler
generated from an GMTI model specified in Appexdix
A, excluding blank lines.

SLOC = 2, 284 (1)

The compiler produces code in the C programming
language. Let G be the G Factor when using C program-
ming language.

G = 128 (2)

Let EAF be the Effort Adjustment Factor that is
calculated in table 9.

EAF = 1.14492 (3)

For this analysis, we selected Development Mode to
be Organic instead of Embedded or Semidetached. For
Organic Model, a = 3.2 and b = 1.05. Therefore, the
APM , Adjusted Person Months is

APM = a(SLOC/1000)b(EAF) = 8.78 (4)

APM is the number of person months required to
implement GMTI encoder and decoder by hand.

Using Organic Mode, let c = 2.5 and d = 3.8. Let
TDEV be the development time in months required to
build GMTI encoder and decoder by hand.

TDEV = c(APM)d = 2.5(8.78)0.38 = 5.01 (5)

Let NP be the number of personnel required to build
a GMTI encoder and encoder manually. This tells us how
many developers are required to work on this project.

NP = APM/TDEV = 8.78/5.01 = 1.75 (6)

In summary, if we uses ASN.1 compiler to generated
C programming language code for GMTI message serial-
ization, we would save 1.75 developers and 5.01 months
in development effort.

STANAG 4545 CST MEETING, APRIL 2012, UNCLASSIFIED 14

TABLE 9
COCOMO Cost Drivers and their values used to derive

EAF Effort Adjustment Factor.

Cost Drivers Values
Required Reliability 1.4 (Very High)

Database Size 0.94 (Very Low)
Product Complexity 1 (Nominal)

Execution Time Constraint 1 (Nominal)
Main Storage Constraint 1 (Nominal)

Virtual Machine Volatility 1 (Nominal)
Computer Turn Around Time 0.87 (Low)

Analyst Capability 1 (Nominal)
Application Experience 1 (Nominal)

Programmers Capability 1 (Nominal)
Virtual Machine Experience 1 (Nominal)

Language Experience 1 (Nominal)
Modern Programming Practice 1 (Nominal)

Software Tools 1 (Nominal)
Required Development Schedule 1 (Nominal)

Effort Adjustment Factor 1.14492

ACKNOWLEDGMENTS

I would like to thank George Dinardo for providing
feedback and his expert knowledge on STANAG 4607.

REFERENCES
[1] STANAG 4607 JAS (Edition 3), NATO Ground Movig Target Indicator

(GMTI) Format. NSA, 14 September 2010
[2] O. Dubuisson, ASN.1. Communication between Heterogeneous Sys-

tems, OSS Nokalva, 5 June 2000.
[3] J. Larmouth, ASN.1 Complete. OSS Nokalva, 1999
[4] ISO 8824-1 — ITU-T X.680, Specification of Basic Notation. ITU-T,

November 2008.
[5] ISO 8825-1 — ITU-T X.690, BER, CER, and DER. ITU-T, November

2008.
[6] ISO 8825-5 — ITU-T X.694, Mapping W3C XML Schema Definitions

into ASN.1. ITU-T, November 2008.
[7] SMPTE 336M-2003, Data Encoding Protocol Using Key-Length-Value.

White Plains, NY: 22 August 2007.
[8] D. Crocker, Ed. Brandenburg InternetWorking, P. Overell, RFC

5234, Augmented BNF for Syntax Specification: ABNF. IETF, January
2008.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, RFC 2616, Hypertext Transfer Protocol: HTTP/1.1. IETF,
June 1999.

[10] J. Klensin, RFC 2821, Simple Mail Transfer Protocol. IETF, April
2001.

[11] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[12] T. Bray, C. Frankston, A. Malhotra, Document Content Description
for XML. W3C, 31 July 1998.

[13] J. Cowan, R. Tobin, XML Information Set (Second Edition). W3C,
4 February 2004.

[14] J. Schneider, T. Kamiya, Efficient XML Interchange (EXI) Format 1.0.
W3C, 10 March 2011.

[15] Unified Modeling Language (UML), http://www.uml.org/
[16] Cygwin, http://cygwin.com/
[17] Open Source Software (OSS) ASN.1 Compiler,

http://lionet.info/asn1c/blog/
[18] ASN Lab ASN.1 Compiler, http://www.asnlab.com/

James McAvoy, CD, BSc Contracting to DLCSPM 4-PMO ISTAR C2 as
a Senior ISR Systems Engineer for the last two years developing various
applications to enhance tactical ISR capabilities.

